首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24002篇
  免费   2678篇
  国内免费   1117篇
电工技术   855篇
综合类   2424篇
化学工业   10909篇
金属工艺   387篇
机械仪表   670篇
建筑科学   1255篇
矿业工程   592篇
能源动力   318篇
轻工业   1785篇
水利工程   574篇
石油天然气   1359篇
武器工业   164篇
无线电   940篇
一般工业技术   2514篇
冶金工业   408篇
原子能技术   135篇
自动化技术   2508篇
  2024年   49篇
  2023年   224篇
  2022年   333篇
  2021年   541篇
  2020年   563篇
  2019年   565篇
  2018年   535篇
  2017年   741篇
  2016年   773篇
  2015年   862篇
  2014年   1287篇
  2013年   1298篇
  2012年   1797篇
  2011年   1828篇
  2010年   1493篇
  2009年   1598篇
  2008年   1420篇
  2007年   1822篇
  2006年   1745篇
  2005年   1492篇
  2004年   1247篇
  2003年   1104篇
  2002年   842篇
  2001年   698篇
  2000年   468篇
  1999年   457篇
  1998年   314篇
  1997年   286篇
  1996年   209篇
  1995年   229篇
  1994年   203篇
  1993年   198篇
  1992年   137篇
  1991年   100篇
  1990年   62篇
  1989年   71篇
  1988年   38篇
  1987年   18篇
  1986年   17篇
  1985年   23篇
  1984年   28篇
  1983年   22篇
  1982年   23篇
  1980年   3篇
  1979年   5篇
  1961年   2篇
  1960年   2篇
  1958年   2篇
  1957年   2篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
2.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
3.
4.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
5.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
6.
Side-chain optimized poly (2,6-dimethyl-1,4-phenylene oxide)-g-poly (styrene sulfonic acid) (PPO-g-PSSA) is designed with balanced water-resistance and sulfonation degree. The PPO-g-PSSA is synthesized by controlled atom-transfer radical polymerization (ATRP) from brominated poly (2,6-dimethyl-1,4-phenylene oxide) (PPO-xBr) and ethyl styrene-4-sulfonate and followed by hydrolysis. A series of PPO-g-PSSA are prepared possessing different bromination degree (x) of PPO-xBr and polymerization degree (m) of the side-chains and the water-resistances of the fabricated membranes are investigated. The results show that a PPO-g-PSSA at relatively low x (x < 0.2) and high m (m > 4) exhibits good balance between the water-resistance and the sulfonation degree. Namely, it displays suitable proton conductivity with compromised water-resistance. Moreover, a maximum ion exchange capacity (IEC) of 3.24 mmol g?1 is reached without the sacrifice of water-resistance. In addition, PPO-g-0.08PSSA-13 and PPO-g-0.14PSSA-4 are chosen characterized by thermogravimetric analysis, proton conductivities and mechanical properties. At 90% RH, the optimized PPO-g-0.08PPSA-13 possesses a proton conductivity of 37.9 mS cm?1 at 40 °C and 45.5 mS cm?1 at 95 °C, respectively.  相似文献   
7.
Product formulations for industrial processes are typically developed at laboratory scale. However, the mixing conditions are not easily mimicked in the laboratory. A rotational device is proposed in this study as a fast laboratory-scale formulation development, which enables mimicking the mixing conditions in the industrial process. The geometrical configurations of the rotational device are from rheometry devices (plate-plate and cone-plate). The main advantages of this method are the small amounts of raw materials and shorter testing times. This methodology is applied to an industrial case study, the reaction injection molding (RIM) process. The mixing length scales evolution in the rotational rheometer were matched to those in RIM machines. The main novelty of this study is the introduction of a protocol that bridges the processing conditions at laboratory using small amounts of raw materials to high throughput continuous flow reactors.  相似文献   
8.
The features of crystal structures, thermo-mechanical properties and their dominant mechanisms of weberites RE3NbO7 were studied as high-temperature oxides. We concentrated on connections between structures and thermo-mechanical properties, the influences of bond lengths, lattice distortion degrees and microstructures on these properties were estimated. The shortening of bond length and increment of bonding strength would lead to the increase of mechanical properties. The Vickers hardness (4.5-7.8 GPa) and toughness (0.5-1.6 MPa·m1/2) of weberites RE3NbO7 are enhanced by grain refinement and increment of bond strength, while crystal structures, bond lengths, and lattice distortion degrees influenced their Young's modulus (100-170 GPa). Nano-indentation was applied to test the influence of microstructures on modulus and hardness. The dominant mechanisms for mechanical properties and thermal conductivity were proposed, which was conducive to properties tailoring and engineering applications of weberites RE3NbO7 oxides.  相似文献   
9.
In the present work, the free radical polymerization of styrene is modeled by considering the phenomenology of the process (a simplified model, which does not include the diffusional effects, gel, and glass effects) in combination with an empirical model represented by an artificial neural network. Differential evolution (DE) algorithm, belonging to the class of evolutionary algorithms, is applied for developing the neural models in optimal forms. For improving the results—predicted conversion and molecular weights as function of time, temperature, and initiator concentration—different combinations between phenomenological model and neural network are tested; also, individual and stacked neural networks have been developed for the polymerization process. This methodology based on hybrid models, including neural networks aggregated in stacks, provides accurate results.  相似文献   
10.
《Ceramics International》2022,48(16):23452-23459
In the family of inorganic nanomaterials, zirconia is a highly promising functional ceramic with a high refractive index, hardness, and dielectric constant, as well as excellent chemical inertness and thermal stability. These properties are enhanced in nano-zirconia ceramics, because nanopowders have a small particle size, good morphology, and uniform and dispersive distribution. In this study, a co-precipitation process was proposed to synthesise highly dispersed MgO–Y2O3 co-stabilized ZrO2 nanopowders. The effects of different calcination temperatures on the crystallisation degree and particle dispersion of zirconia nanopowders were characterised by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption using the Brunauer–Emmett–Teller (BET) theory, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The optimum synthesis conditions were obtained as follows: 6 h of high-energy planetary grinding and calcination at 800 °C in an electric furnace. Under these optimum conditions, the average particle size of the prepared powder was 28.7 nm. This process enriches the literature on the controllable preparation of Mg–Y/ZrO2 nanopowders obtained by the co-precipitation method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号